EXPLANATION
Given the quadratic equation 4x^2 + 4y^2 -16x +24y=-27
As we already know, the circle equation with a radius r, centered at (a,b) is;
![(x-a)^2+(y-b)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/ilekd9w5v3ytefhk3unvr8rhka2u3mptc6.png)
Dividing by coefficient of square terms: 4
![x^2+y^2-4x+6y=-(27)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/x5kcqu639wpn3t31ix4lkpm9j3en424dxw.png)
Group x-variables and y-variables together:
![(x^2-4x)+(y^2+6y)=-(27)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/kk3yvikf09cozr6dxc72gqasqcm3b9lmie.png)
Convert x to square form:
![(x^2-4x+4)+(y^2+6y)=-(27)/(4)+4](https://img.qammunity.org/2023/formulas/mathematics/college/9jo2ei9c3vdkn0fqummt11i1qke0innn8f.png)
Convert to square form:
![(x-2)^2+(y+3)^2=-(27)/(4)+4+9](https://img.qammunity.org/2023/formulas/mathematics/college/irb7sfbwsluc7q6kpmaxxyu79ddl0vmj2b.png)
Refine -27/4+4+9
![(x-2)^2+(y-(-3))^2=((5)/(2))^2](https://img.qammunity.org/2023/formulas/mathematics/college/efm7exz3oql2h6yr0pmrq6yjvkie31nvc3.png)
Therefore the circle properties are:
center: (a,b)=(2,-3), radius=5/2
The graph is as follows: