We have an exponential function and 2 points that belong to that function.
We have to find the parameters "a" and "b" of the function.
We can start wit parameter b using both points. We divide the value of y for both points as:
![\begin{gathered} (y_2)/(y_1)=(a\cdot b^(x_2))/(a\cdot b^(x_1))=(b^(x_2))/(b^(x_1))=b^(x_2-x_1) \\ b=\sqrt[x_2-x_1]{(y_2)/(y_1)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9jd53soth57wlk5vtnm55rc8uqk599jm8v.png)
Replacing with the values (x1, y1) = (12, 147) and (x2, y2) = (18, 1029) we get the value of b:
![\begin{gathered} b=\sqrt[18-12]{(1029)/(147)} \\ b=\sqrt[6]{7} \\ b\approx1.383 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r4ssth8j2gm5rpwl81712kuugt9x5c0403.png)
Now, we can use this result and one of the points to find the parameter a as:

Now we can write the equation as:

We can find the value of y when x=8 replacing x with 8 in the exponential function and calculating y:

Answer:
A. The equation is y=0.333 * 1.383^x.
B. The value of y(8) is 4.457