Step 1
Write the expression for the probability of an event.
![\text{Probability of an event A =}\frac{Numberof\text{ required events}}{\text{Total number of events}}](https://img.qammunity.org/2023/formulas/mathematics/college/sq8ulyvuwjf0p4y0pgdhultxrl6edygdgt.png)
Where
Number of required events for red shirts = 3 shirts
Number of required events for black shirts= 10 black shirts
Number of required events for blue shirts = 7 blue shirts
Total number of required events = 20 shirts
Step 2
Find the probability of randomly selecting a red shirt(R).
![Pr(R)=\frac{Number\text{ of required events for red shirt}}{\text{Total number of required events}}=(3)/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/jlswio35ge3curkkbpumtawbkls3xks77x.png)
Step 3
Find the probability of randomly selecting a shirt that is not black(not B).
![Pr(\text{not B)=1- (Pr(black)) }](https://img.qammunity.org/2023/formulas/mathematics/college/tt983echt5agvo19qmfivks3jdyln8ioms.png)
![\begin{gathered} Pr(\text{not B) = 1-}\frac{Number\text{ of required events for black shirt}}{\text{Total number of events}}=1-(10)/(20) \\ Pr(\text{not B)}=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ku5ddyj8mzyrlgpjrt6nlicb9livv886m4.png)