143k views
2 votes
The triangles are similar. find the length of each side of the smaller triangle to the nearest 0.01

User R Nar
by
7.8k points

1 Answer

6 votes

In the given similar traingles ABC and MNO

From the properties of similar triangle :

The ratio of corresponding sides of similar triangle are always equal

In the triangle ABC and MNO


(AB)/(MN)=(BC)/(NO)=(CA)/(OM)

In the given figure, we have : AB = 12, BC = 10, NO = 3


\begin{gathered} (AB)/(MN)=(BC)/(NO)=(CA)/(OM) \\ (12)/(MN)=(10)/(3)=(CA)/(OM) \\ \text{ simplify the first two and solve for MN} \\ (12)/(MN)=(10)/(3) \\ MN=(3*12)/(10) \\ MN=(36)/(10) \\ MN=3.6\text{ cm} \end{gathered}

In triangle ABC apply pythagoras for the side AC


\begin{gathered} \text{ Hypotenuse}^2=Perpendicular^2+Base^2 \\ AC^2=AB^2+BC^2 \\ AC^2=12^2+10^2 \\ AC^2=144\text{ + 100} \\ AC^2=244 \\ AC=\sqrt[]{244} \\ AC=15.62\text{ cm} \end{gathered}

Now apply the corresponding ratio :


\begin{gathered} (AB)/(MN)=(BC)/(NO)=(CA)/(OM) \\ (12)/(3.6)=(10)/(3)=(15.62)/(OM) \\ \text{ simplify the last two and solve for OM :} \\ (10)/(3)=(15.62)/(OM) \\ OM=(15.62*3)/(10) \\ OM=4.686\text{ cm} \end{gathered}

OM = 4.69 cm

In triangle MNO

MN = 3.6 cm, NO = 3 cm, OM = 4.69 cm

Answer :

MN = 3.6 cm,

NO = 3 cm,

OM = 4.69 cm

The triangles are similar. find the length of each side of the smaller triangle to-example-1
User Collin McGuire
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories