Given
total number , n= 10
successful events , x = 6
probability of success, p =45% = 0.45
probability of failure , q = 1 - p = 1 - 0.45 = 0.55
Find
the probability exactly 6
Step-by-step explanation
Use binomial probability formula ,
![P(x)=^nC_xp^x(1-p)^(n-x)](https://img.qammunity.org/2023/formulas/mathematics/college/228ubqwnlccabcg3n3wf64mf1a6qvxtizv.png)
so ,
![\begin{gathered} P(x)=^(10)C_6(0.45)^6(0.55)^4 \\ \\ P(x)=(10!)/(6!4!)*0.00830376563*0.09150625 \\ \\ P(x)=0.159567755 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yemt7w49m0badaen897kxpt84k78l1414b.png)
Final Answer
Probability of exact 6 = 0.160