The question says that the product of two consecutives even integers is 120, wich give us the expression:
![x(x+2)=120](https://img.qammunity.org/2023/formulas/mathematics/college/rvhxbswfywctx51cpdckjmtzdyvsch46wq.png)
Developing the calculations, we end with the followed second degree equation:
![x^2\text{ + 2x = 120 }\Rightarrow\text{ x}^2\text{ + 2x - 120=0}](https://img.qammunity.org/2023/formulas/mathematics/college/luso7o57tr93h94shkx5lb68yk6za9w3tf.png)
We can use Bhaskara's formula to find the roots, as follow:
![x=\frac{-2\pm\sqrt[]{2^2-4(1)(-120)}}{2*1}\text{ = }\frac{-2\pm\sqrt[]{4+480}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/u9ebp58uhddxk07r7jtrzuty83n4nn4muf.png)
Continuing the calculos, we find:
![x=\frac{-2\pm\sqrt[]{484}}{2}=\text{ }(-2\pm22)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/87ullvfw8lqk5mtlaohc1779k64q92ve4n.png)
So, our x can be:
![(-2-22)/(2)\text{ = -12 or }(-2+22)/(2)=\text{ 10}](https://img.qammunity.org/2023/formulas/mathematics/college/6ahw3asedtuh6ahxv7ikzootau44yc4kyv.png)
We want the positive solution, so our integers are 10 and 12.