In order to calculate the projection of u on v, we can use the formula below:
![proj_vu=(u\cdot v)/(||v||^2)\cdot v](https://img.qammunity.org/2023/formulas/mathematics/college/s9fcyjnzzbwv8iptcpf54lev6rd20fznub.png)
First, let's define the vectors u and v from the image:
![\begin{gathered} u=-10i-7j\\ \\ v=-8i+4j \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oprvl7sczgtudimsgvsteo6x7m2f1pvy3y.png)
Now, let's calculate the dot product on the numerator:
![u\cdot v=(-10)(-8)+(-7)(4)=80-28=52](https://img.qammunity.org/2023/formulas/mathematics/college/ykueuva93j8ujnf3zsavotyeurp6b0gcc9.png)
The denominator can be calculated as the dot product of v and itself:
![v^2=v\cdot v=(-8)(-8)+(4)(4)=64+16=80](https://img.qammunity.org/2023/formulas/mathematics/college/r9pcfs6q8hifgzbiih1m7qjpto5umlvrcj.png)
Therefore the projection is given by:
![prov_vu=(52)/(80)\cdot(-8i+4j)=-5.2i+2.6j](https://img.qammunity.org/2023/formulas/mathematics/college/t90m6cgokthanc5nenqvsc0qs19wug8du6.png)
Correct option: the second one.