Given:
![\begin{gathered} \text{length of arc MN = 3}\pi cm \\ \text{length of arc }RE\text{ = }6\pi cm \\ \text{angle subtended at the center = }30 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6wxt64yor7mr9ej5ckrfmn8yfaeupbd842.png)
The subtended by both arcs is the same
From the length of arc formula:
![\text{length of arc = }(\theta)/(360)\text{ }*\text{ 2}\pi r](https://img.qammunity.org/2023/formulas/mathematics/college/u48hdd7hpsmfqvo9vnyib7dc86zu2exj44.png)
Let us walk through the options to check which is correct
Radius of the larger circle:
![\begin{gathered} r\text{ = }\frac{l*\text{ 360}}{\theta\text{ }*\text{ 2}\pi} \\ =\text{ }\frac{6\pi\text{ }*\text{ 360}}{30\text{ }*\text{ 2}\pi} \\ =\text{ 36 }cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ieqm7rtj8okitemgnzbuc9unpdn00lkq7t.png)
Radius of the smaller circle:
![\begin{gathered} r\text{ = }\frac{l*\text{ 360}}{\theta\text{ }*\text{ 2}\pi} \\ =\text{ }\frac{3\pi\text{ }*\text{ 360}}{30\text{ }*\text{ 2}\pi} \\ =\text{ 18 }cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vusg03rbw2nr7ugenedmo936fips5l7vb1.png)
The length of the segment NE:
This is difference between the radius of the larger circle and that of the smaller circle:
![\begin{gathered} =\text{ }36\text{ - 18} \\ =\text{ 18 }cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kxsjf9xi4blj18dt53f2j5wy24j20t9kqi.png)
The length of the segment MR:
This is difference between the radius of the larger circle and that of the smaller circle:
![\begin{gathered} =\text{ 36 - 18} \\ =\text{ 18 }cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ojkxxx6iw3pydit3afyuqd1xm944lg2blr.png)
The circumference of the larger circle:
![\begin{gathered} =\text{ 2}\pi r \\ =\text{ 2 }*\text{ }\pi\text{ }*\text{ 36} \\ =\text{ 72}\pi cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zigbw72pve6j9yx3jhtji11529z9tenbqq.png)
Hence, the statements that are correct are:
Statement 2
Statement 4
Statement 5