185k views
0 votes
find the mean the median mode range and standard visitation of each data set that is obtained after adding the given content

1 Answer

3 votes

The set of values after adding the constants will be:


\lbrace5,6,0,3,9,6,0,13,6,8\rbrace

then:


\operatorname{mean}=(5+6+0+3+9+6+0+13+6+8)/(10)=(28)/(5)=5.6
\mod e=6
\text{range}=\lbrace0,3,5,6,8,9,13\rbrace

and for the standard deviation:


SD=\sqrt[]{((5-5.6)^2+3(6-5.6)^2+2(0-5.6)^2+(3-5.6)^2+(9-5.6)^2+(8-5.6)^2+(13-5.6)^2)/(10)}

and it would be equal to:


SD=\sqrt[]{((9)/(25)+(12)/(25)+(1568)/(25)+(169)/(25)+(289)/(25)+(144)/(25)+(1369)/(25))/(10)}=\sqrt[]{((3560)/(25))/(10)}=\sqrt[]{((712)/(5))/(10)}=\sqrt[]{(356)/(25)}=\frac{2(\sqrt[]{89})}{5}=

then:


SD\approx3.773592453

User Mati Kepa
by
4.7k points