We have the function:
![f(x)=14x^3-7x^2+6.](https://img.qammunity.org/2023/formulas/mathematics/high-school/pbtwvgmznlodqht3be9x3vvs6um3a5onux.png)
We must identify the function that:
0. reflects the function across the y-axis,
,
1. shift it 6 units up.
1) To reflect the function across the y-axis we replace x by -x:
![f(x)\rightarrow g(x)=14(-x)^3-7(-x)^2+6=-14x^3-7x^2+6.](https://img.qammunity.org/2023/formulas/mathematics/high-school/k8rx2ylneugw4ess41c2kygij17yaz2tnk.png)
2) To shift the result 6 units up, we sum +6 on the right side:
![g(x)\rightarrow h(x)=-14x^3-7x^2+6+6=-14x^3-7x^2+12.](https://img.qammunity.org/2023/formulas/mathematics/high-school/z3mrwuo73d4cbwmucbzl4ch1qazmlav3mx.png)
Plotting both functions, we get:
Answer
Second option
![h(x)=-14x^3-7x^2+12](https://img.qammunity.org/2023/formulas/mathematics/high-school/zjm3hu90yjinpmcsl94n7dl8idwcngk14p.png)