Given the points:
(x1, y1) = (-12, 1)
(x2, y2) ==> (-8, 6)
To find the slope, use the slope formula below:
![m=(y2-y1)/(x2-x1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wt3vklmulg2853jxzclws9uvfaplhmpgv7.png)
![\begin{gathered} m=(6-1)/(-8-(-12))=(6-1)/(-8+12) \\ \\ m=(5)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lttj6rm5a4746daoi8k5lu5pi4f0mtuoe6.png)
The slope of the line is:
![(5)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/28myyekp47ud1nb1hh37fvj5eomaypma2i.png)
If the order of the points is reversed, let's find the slope.
First swap the order of the points:
(x1, y1) ==> (-8, 6)
(x2, y2) ==> (-12, 1)
![\begin{gathered} m=(1-6)/(-12-(-8))=(1-6)/(-12+8) \\ \\ m=(-5)/(-4) \\ \\ m=(5)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a33zqv2ploy1kkkc74saxt7757m6yi95ka.png)
Therefore, if the order of the points is reversed, the slope will still be the same.
ANSWER:
![(5)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/28myyekp47ud1nb1hh37fvj5eomaypma2i.png)
If the order of the points is reversed, the slope will remain the same.