Light passes from air into water at an angle of 40.0° to the normal.
The angle of refraction is smaller than the angle of incidence when light passes from a lower density medium (air = 1) to a higher density medium (water = 1.333)
The angle of refraction can be found using Snell's law given by
![n_1\cdot\sin \alpha_1=n_2\cdot\sin \alpha_2](https://img.qammunity.org/2023/formulas/physics/college/ewv13n81b1wa7uubx86avb7h4zyvs4gq3h.png)
Where
n₁ = Refractive index of the air = 1
n₂ = Refractive index of the water = 1.333
α₁ = Angle of incidence = 40.0°
α₂ = Angle of refraction = ?
Let us substitute these values into the above equation and solve for α₂
![\begin{gathered} n_1\cdot\sin \alpha_1=n_2\cdot\sin \alpha_2 \\ 1_{}\cdot\sin (40.0\degree)_{}=1.333\cdot\sin \alpha_2 \\ \sin \alpha_2=\frac{1_{}\cdot\sin (40.0\degree)_{}}{1.333} \\ \sin \alpha_2=0.4822 \\ \alpha_2=\sin ^(-1)(0.4822) \\ \alpha_2=28.9\degree \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/kk1k0d1im2ooz0tkrvwyzfrg8pfl25mwgn.png)
Therefore, the angle of refraction is 28.9°