178k views
3 votes
2.Drag each tile to the correct box.Arrange the summation expressions in increasing order of their values.Στο) - Στον -1Στα):t151 - 1t = 1K

2.Drag each tile to the correct box.Arrange the summation expressions in increasing-example-1
User Aquino
by
3.2k points

1 Answer

1 vote
Answer:

In an increasing order, the summations are:


\begin{gathered} \sum ^2_{t\mathop{=}1}5(6)^(t-1) \\ \\ \sum ^4_{t\mathop{=}1}5^(t-1) \\ \\ \sum ^4_{t\mathop{=}1}4(5)^(t-1) \\ \\ \sum ^5_{t\mathop{=}1}3(4)^(t-1) \end{gathered}

Step-by-step explanation:

Let us write out the value for each summation, so that the arrangement is easy.


\begin{gathered} \sum ^2_(t\mathop=1)5(6)^(t-1) \\ \\ =5+30 \\ =35 \end{gathered}


\begin{gathered} \sum ^4_(t\mathop=1)4(5)^(t-1) \\ \\ =4+20+100+500 \\ =624 \end{gathered}


\begin{gathered} \sum ^5_(t\mathop=1)3(4)^(t-1) \\ \\ =3+12+48+192+768 \\ =1023 \end{gathered}


\begin{gathered} \sum ^4_(t\mathop=1)5^(t-1) \\ \\ =1+5+25+125 \\ =156 \end{gathered}

Therefore, in an increasing order, we have:


\begin{gathered} \sum ^2_{t\mathop{=}1}5(6)^(t-1) \\ \\ \sum ^4_{t\mathop{=}1}5^(t-1) \\ \\ \sum ^4_{t\mathop{=}1}4(5)^(t-1) \\ \\ \sum ^5_{t\mathop{=}1}3(4)^(t-1) \end{gathered}

User James Joyce
by
3.5k points