We need to find a function of the form:
![a\mleft|x-b\mright|+c](https://img.qammunity.org/2023/formulas/mathematics/college/9qozep7mpfg9adq1bl2cjugmturw47lgt6.png)
Such that it equals 6 when x=0 and 0 when x=5.
Substitute x=5 and assume that the expression is equal to 0:
![a\mleft|5-b\mright|+c=0](https://img.qammunity.org/2023/formulas/mathematics/college/juu9tishoxuofhlyk7nove6e7fs7yjmtgw.png)
Since the vertex of the function is at the point (5,0), we can assume that c=0.
Therefore:
![a\mleft|5-b\mright|=0](https://img.qammunity.org/2023/formulas/mathematics/college/vnnbl2bwwg14w7qgprqbjne7v2khzjb356.png)
Divide both sides by a:
![|5-b|=0](https://img.qammunity.org/2023/formulas/mathematics/college/hcuu7dltwypxlmtya5jw3pubyjzarsprl9.png)
Using that for any number k, |k| = 0 if and only if k=0, then:
![5-b=0](https://img.qammunity.org/2023/formulas/mathematics/college/hb0l59dzbyvoo20u47zi6wppl542bimvwk.png)
![\text{Therefore, b=5.}](https://img.qammunity.org/2023/formulas/mathematics/college/owsmoss7x2iotqg486f6arl0cb09sfr0wk.png)
Next, substitute x=0 and assume that the expression is equal to 6 to find a.
![a\mleft|0-5\mright|=6](https://img.qammunity.org/2023/formulas/mathematics/college/y82r4myr8flc8xx8br50j59lfnnb2qgw5n.png)
Since |0-5|=5:
![5a=6](https://img.qammunity.org/2023/formulas/mathematics/college/l6zjpa6qqh9ln8juljw77fafa93160t2hu.png)
Dividing both sides by 5, we get the value of a:
![a=(6)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/17sobwo8tnzrzw3mw4btt496hozymrrjo4.png)
Substitute a=6/5, b=5 and c=0 in the original equation:
![(6)/(5)|x-5|](https://img.qammunity.org/2023/formulas/mathematics/college/dha7ivg0shhstdnnibo2g00z6d9ngr6tgq.png)
You can check that this expression is equal to 6 when x=0 and it is equal to 0 when x=5.
To find the height at which the second studend should catch the ball, notice that the second student will be placed at x=5+4=9.
Substitute x=9 to find how high will the ball bounce for the second student to catch it:
![(6)/(5)|9-5|=(6)/(5)|4|=(6\cdot4)/(5)=(24)/(5)=4.8\text{ ft}](https://img.qammunity.org/2023/formulas/mathematics/college/7nm45a4z3s3e3s0z1lc2qw3wgyiqk7l1td.png)
To summarize:
![\begin{gathered} \text{The function which represents this situation is:} \\ f(x)=(6)/(5)|x-5| \\ \\ \text{The ball bounces up to }4.8\text{ feet for the second student to catch it.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xoy96wsl33uktfmytaiwaw4avgs18ef8su.png)