We have a line with two points, a conchoidal point, an endpoint and the midpoint.
Point A will be (-5,8) and the unknown endpoint which we will call B will be (x,y).
The midpoint of AB is (4,3), to find point B, We need to use our generalized midpoint formula:
![\begin{gathered} MP=((x_1+x_2)/(2),(y_1+y_2)/(2)) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jkqcxrg6jqut39sdon3ek2m921v1k707a9.png)
Now, we can replace the known values
![MP=((-5+x)/(2),(8+y)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/wb4s3drtuowhbe68w7baw7gd0qk63lzue3.png)
Solve each separately:
![\begin{gathered} (-5+x)/(2)=4 \\ x-5=4\cdot2 \\ x=8+5 \\ x=13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h2ml50z1bl912jsq1bdpspd4va9kw3ku8j.png)
![\begin{gathered} (8+y)/(2)=3 \\ y+8=3\cdot2 \\ y=6-8 \\ y=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6q26nbozer53lorq1yrkvpia8nwi08pz3o.png)
In conclusion, the ordered pair for the other endpoint of the line segment is:
![(13,-2)](https://img.qammunity.org/2023/formulas/mathematics/college/v10v05drs4mxxsy52xczf251doqwuotd7q.png)