In order to find the number of hours it takes to do the full rotation we separate into pieces the days, hours, and minutes and convert each of them separately.
using the conversion factor from days to hours we get that
![1\text{day}=24\text{hours}](https://img.qammunity.org/2023/formulas/mathematics/high-school/i3m3xm0ytch7vohdis081253lwxnl568b9.png)
then we get that
![38\text{days}\cdot\frac{24\text{hours}}{1day}=912hours](https://img.qammunity.org/2023/formulas/mathematics/high-school/75y65s6ssis3l359s0bprbz2w8obz2oayi.png)
hours does not need a conversion factor, meaning that
![10\text{hours}=10\text{hours}](https://img.qammunity.org/2023/formulas/mathematics/high-school/57mcgh72qwlonuzzhqdvzvdv6apk8cmqpm.png)
continue by converting the minutes using the following conversion factor
![1\text{hour}=60\min](https://img.qammunity.org/2023/formulas/mathematics/college/r1emtl1yadnxc9o3sa9elpvz6zlulrukn4.png)
then,
![30\min \cdot\frac{1\text{hour}}{60\min }=0.5\text{hours}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3lfbjoj9yhf1c9az32yfybfpnoses3fvur.png)
To complete add all the results together
![\begin{gathered} 912+10+0.5 \\ 922.5\text{hours} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ov3k8n3xp0jttk9bi7bayn25tdnmpxcmt7.png)
It takes mercury 922.5 hours to complete a full rotation.