Let C be the total amount of C-14, after a time t from the origin of the piece of wood. If the initial amount of C-14 is C_0, and the half-life of C-14is τ, then, the formula that relates these variables, is:
![C=C_0*2^(-t/\tau)](https://img.qammunity.org/2023/formulas/physics/college/ls1f1d1vjsestjhfry6rs1mo6e1c8tzc7l.png)
Isolate t from the equation:
![\begin{gathered} \Rightarrow(C)/(C_0)=2^(-t/\tau) \\ \Rightarrow\log _2((C)/(C_0))=-(t)/(\tau) \\ \Rightarrow-\tau\cdot\log _2((C)/(C_0))=t \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/wsv02wyk4b7lvhmrhnei7m1dct32sind0t.png)
Therefore:
![t=-\tau\cdot\log _2((C)/(C_0))](https://img.qammunity.org/2023/formulas/physics/college/4y5u2zpmzxa10o8z43bdzzrcq3udmjr191.png)
Since the ratio r between the initial amount of C-14 and C-12 is given, we can find the initial amount of C-14:
![\begin{gathered} (C_0)/(C_(12))=r \\ \Rightarrow C_0=r* C_(12) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/swvzs6cm2pp4ay56csdxzvwpuv137wodn4.png)
Substitute r=1.20*10^-12 and C_12=1.202*10^-2 mol to find the initial amount of C-14:
![\begin{gathered} C_0=1.2*10^(-12)*1.202*10^(-2)\text{mol} \\ =1.4424*10^(-14)\text{mol} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/gnpu1nre05ywtmjh97hwsl1c3jkz4c58i0.png)
Substitute τ=5730y, C_0=1.4414*10^-14 mol, and C=9.843*10^-15 mol into the formula to find t, which is the age of the wood from the sample:
![\begin{gathered} t=-\tau\cdot\log _2((C)/(C_0)) \\ =-5730y*\log _2(\frac{9.843*10^(-15)\text{mol}}{1.4424*10^(-14)\text{mol}}) \\ =3158.956\ldots y \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/g80uobmfj4hs3xjrce9bybea7w4moso5r0.png)
Therefore, to the nearest ten, the age of the sample of wood in the tomb, is:
![3160\text{ years}](https://img.qammunity.org/2023/formulas/physics/college/xzctsdovn0502uevpaskv8f6gcn6cs4hkn.png)