SOLUTIONS
This is the trigonometric form of a complex number where
![z=-5√(3)-5i](https://img.qammunity.org/2023/formulas/mathematics/high-school/a5b98qm6wi0ljb5lyazgxjjsxeit1vykxl.png)
the modulus and
θ
is the angle created on the complex plane.
From the graph, a = r cos θ and b = r sin θ.
z=a+bi
z=rcosθ+irsinθ
z=r(cosθ+isinθ)
![\begin{gathered} r=√(a^2+b^2) \\ r=\sqrt{5√(3))^2+5^2} \\ r=√(75+25) \\ r=√(100) \\ r=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hcf8uycghez2n418golmq3mrmdb9jwlljx.png)
Trigonometric Form of a Complex Number
z=r(cosθ+isinθ)
r is called the modulus and θ is called the argument
Convert between trigonometric form and standard form using
a=rcosθ
b=rsinθ
tanθ=b/a
![\begin{gathered} tan\theta=(b)/(a)=(-5)/(-5√(3))=(1)/(√(3)) \\ \theta=tan^(-1)((1)/(√(3))) \\ \theta=210 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/thahy3m93nqtxbxob7dygp7ck6wdbz767t.png)
Therefore the trigonometric form will be
![](https://img.qammunity.org/2023/formulas/biology/high-school/th3y35ipo1jqnb1pyz12bkyph7hz83zofb.png)