Answer:
![y=-2x^3-4x^2+22x+24](https://img.qammunity.org/2023/formulas/mathematics/college/rnx784gboo1ggnlbf636hn3339cm9zu2b2.png)
Step-by-step explanation:
The standard form of a cubic equation is given as:
![y=ax^3+bx^2+cx+d](https://img.qammunity.org/2023/formulas/mathematics/college/mbjqr8pic4togteaxruoa5y4bxzeofpzl1.png)
If the equation has x-intercepts of -4,-1, and 3, then we have:
At x=-4
![\begin{gathered} At\text{ x=-4} \\ 0=a(-4)^3+b(-4)^2+c(-4)+d \\ -64a+16b-4c+d=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d5x99arrln2n7yns1abvil72s446b7lkq0.png)
At x=-1
![\begin{gathered} 0=a\mleft(-1\mright)^3+b\mleft(-1\mright)^2+c\mleft(-1\mright)+d \\ -a+b-c+d=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/baat1efm6ia2b0zgqggqw0syjafqaurdmp.png)
At x=3
![\begin{gathered} 0=a\mleft(3\mright)^3+b\mleft(3\mright)^2+c\mleft(3\mright)+d \\ 27a+9b+3c+d=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wvfouhkbsjyjzyho719g3vjs252oi7jb3l.png)
At the point (1,40)
![\begin{gathered} 40=a\mleft(1\mright)^3+b\mleft(1\mright)^2+c\mleft(1\mright)+d \\ a+b+c+d=40 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cz1f34w1orlarpi6da3h4v24m9oc872qhu.png)
This gives us a system of equations with 4 unknowns.
![\begin{gathered} -64a+16b-4c+d=0 \\ -a+b-c+d=0 \\ 27a+9b+3c+d=0 \\ a+b+c+d=40 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5yaqnzek2r51metjcr4h7ji6hg8mdnlpl4.png)
If we solve this using a calculator, we have that:
![a=-2,b=-4,c=22,d=24](https://img.qammunity.org/2023/formulas/mathematics/college/wtx8m63mpc4s0xg5eexktmqwmb3eq3p6jp.png)
Therefore, the cubic equation will be:
![y=-2x^3-4x^2+22x+24](https://img.qammunity.org/2023/formulas/mathematics/college/rnx784gboo1ggnlbf636hn3339cm9zu2b2.png)
The graph of the equation is attached below:
We can clearly see the 4 given points on the graph above.