The transformation rule for a reflection across the x-axis is:
![A(x,y)\longrightarrow A^(\prime)(x,-y)](https://img.qammunity.org/2023/formulas/mathematics/college/b9x9ebaub97hb9463hiu37q50egfm27r8j.png)
We will apply this rue to the three vertices.
Reflection across the x-axis of P:
![P(-5,-7)\longrightarrow P^(\prime)(-5,-(-7))](https://img.qammunity.org/2023/formulas/mathematics/college/3ue74v05653f91ssazgw6tb9jr244y42dw.png)
In the image point, the x-coordinate remains the same, but we have to change the sign of the y-coordinate:
![P(-5,-7)\longrightarrow P^(\prime)(-5,7)](https://img.qammunity.org/2023/formulas/mathematics/college/fwdpser1loyzu9tgvkgwmykjul07gm40x3.png)
Reflection across the x-axis of Q:
![Q(-5,-2)\longrightarrow Q^(\prime)(-5,-(-2))](https://img.qammunity.org/2023/formulas/mathematics/college/5ngx1jz16t5g94hesltw3ynufs27mac587.png)
Simplifying the expression:
![Q(-5,-2)\longrightarrow Q^(\prime)(-5,2)](https://img.qammunity.org/2023/formulas/mathematics/college/e1g4vo21m5o8fg666v81hkstpngnz78wji.png)
Reflection across the x-axis of R:
![R(-9,-10)\longrightarrow R^(\prime)(-9,-(-10))](https://img.qammunity.org/2023/formulas/mathematics/college/cw985lnxfdriczoanmwoqxmy5f86nihuc3.png)
simplifying the expression:
![R(-9,-10)\longrightarrow R^(\prime)(-9,10)](https://img.qammunity.org/2023/formulas/mathematics/college/lfbanisok5zn21pmua4c22859qsyjutlvd.png)
Answer:
![\begin{gathered} P(-5,-7)\longrightarrow P^(\prime)(-5,7) \\ Q(-5,-2)\longrightarrow Q^(\prime)(-5,2) \\ R(-9,-10)\longrightarrow R^(\prime)(-9,10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rgbl8islkwng0pqxy2jvglaes9oypfhd24.png)