90.1k views
0 votes
Please help me I don’t know how to do this

Please help me I don’t know how to do this-example-1

1 Answer

4 votes

Recall the trigonometric function tangent.


\tan \theta=\frac{\text{opposite}}{\text{adjacent}}

We can use either 30° or 60° as our basis for the angle. In this case, we will use 60° (using 30° works just as well, we just have to determine its corresponding opposite and adjacent sides)


\begin{gathered} \text{Given} \\ \theta=60\degree \\ \text{opposite to }\theta=x \\ \text{adjacent to }\theta=\sqrt[]{8} \end{gathered}

Substitute these values to the tangent function and we have


\begin{gathered} \tan \theta=\frac{\text{opposite}}{\text{adjacent}} \\ \tan 60\degree=\frac{x}{\sqrt[]{8}} \end{gathered}

Multiply both sides with square root of 8, to get rid of the fraction in the right side.


\begin{gathered} \sqrt[]{8}\cdot\tan 60\degree=\frac{x}{\sqrt[]{8}}\cdot\sqrt[]{8} \\ \sqrt[]{8}\cdot\tan 60\degree=\frac{x}{\cancel{\sqrt[]{8}}}\cdot\cancel{\sqrt[]{8}} \\ \sqrt[]{8}\cdot\tan 60\degree=x \\ \\ x=\sqrt[]{8}\cdot\tan 60\degree \end{gathered}

Recall that tan 60° = square root of 3 therefore


\begin{gathered} x=\sqrt[]{8}\cdot\tan 60\degree \\ x=\sqrt[]{8}\cdot\sqrt[]{3} \\ x=\sqrt[]{8\cdot3} \\ x=\sqrt[]{24} \\ x=\sqrt[]{4\cdot6} \\ x=2\sqrt[]{6} \\ \\ \text{Therefore, the value of }x\text{ is }2\sqrt[]{6} \end{gathered}

User Pdfman
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories