173k views
3 votes
Find the indicated function given f(x)=3x^2-1 and g(x)=2x+4.Simplified answers in descending power of x.

Find the indicated function given f(x)=3x^2-1 and g(x)=2x+4.Simplified answers in-example-1
User Jenique
by
8.9k points

1 Answer

4 votes

SOLUTION

Given the question in the question tab, the following solution steps answer the questions

Step 1: Write the given functions


\begin{gathered} f(x)=3x^2-1 \\ g(x)=2x+4 \end{gathered}

Step 2: Find f(g(2))


\begin{gathered} f(g(2))\text{ means that we first find the inner bracket before finding the outer bracket} \\ \text{That is, we find g(2) first and then find the f(x) of the solution} \\ g(x)=2x+4 \\ g(2)=2(2)+4=4+4=8 \\ f(g(2))=f(8) \\ f(x)=3x^2-1=3(8^2)-1=3(64)-1=192-1=191 \end{gathered}

The composite function f(g(2)) will give 191

Step 3: Find f(g(x))


\begin{gathered} f(g(x))\text{ means that we first find the inner bracket before finding the outer bracket} \\ \text{That is, we find g(x) first and then find the f(x) of the solution} \\ g(x)=2x+4 \\ f(x)=3x^2-1 \\ f(g(x))=f(2x+4)=3(2x+4)^2-1 \\ 3(2x+4)^2-1=3(4x^2+16x+16)-1=12x^2+48x+48-1 \\ f(g(x))=12x^2+48x+47_{} \end{gathered}

Step 4: Find g(f(x))


\begin{gathered} \text{we find f(x) first and then find the g(x) of the solution} \\ f(x)=3x^2-1 \\ g(x)=2x+4 \\ g(f(x))=g(3x^2-1)=2(3x^2-1)+4 \\ g(f(x))=6x^2-2+4 \\ g(f(x))=6x^2+2 \end{gathered}

Step 5: Find (gog)(x)


\begin{gathered} (g\circ g)(x)\Rightarrow g(g(x)) \\ g(x)=2x+4 \\ (g\circ g)(x)=g(2x+4)=2(2x+4)+4=4x+8+4 \\ (g\circ g)(x)=4x+12 \end{gathered}

Step 6: Find (fof)(-1)


\begin{gathered} (f\circ f)(x)=f(f(x)) \\ f\mleft(x\mright)=3x^2-1 \\ (f\circ f)(-1)=f(f(-1)) \\ f(-1)=3(-1^2)-1=3(1)-1=3-1=2 \\ f(2)=3(2)^2-1=3(4)-1=12-1 \\ (f\circ f)(-1)=11 \end{gathered}

User Tivnet
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories