155k views
3 votes
How do I evaluate a log when the argument is in a fraction?

How do I evaluate a log when the argument is in a fraction?-example-1

1 Answer

5 votes

Step-by-step explanation:

Given that


\begin{gathered} \log_43\approx0.7925 \\ find \\ \log_4((1)/(9)) \end{gathered}

Apply the law of fractional indices below


(1)/(a)=a^(-1)

By applying the law, we will have that


\begin{gathered} (1)/(9)=9^(-1) \\ recall: \\ 9=3^2 \\ 9^(-1)=3^(-2) \end{gathered}

By rewriting the expression, we will have


\operatorname{\log}_4((1)/(9))=\log_4(3^(-2))

Apply the logarithmi law of exponents below


\log_ba^c=c\log_ba
\begin{gathered} \log_4(3^(-2))=-2\log_43 \\ -2\log_43=-2(0.7925) \\ =-1.5850 \end{gathered}

Hence,

The final answer to 4 decimal places is


-1.5850

How do I evaluate a log when the argument is in a fraction?-example-1
User Lakenya
by
4.4k points