To be able to find the y-intercept and the equation of the line of JM, let's identify at least two points that the pass-through line JM and use it in getting the slope, y-intercept, and equation in Slope-Intercept Form: y = mx + b.
Let's use Point J and Point L.
Point J = x1,y1 = (0,6)
Point L = x2,y2 = (6,2)
Step 1: Let's determine the slope of the line (m).
![m\text{ = }\frac{y_2-y_1}{x_2-x_1_{}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/v3oopupw01d7wqt8xxuo2fgq1ds1kc0zen.png)
![m\text{ = }\frac{2\text{ - 6}}{6\text{ - 0}}\text{ = }(-4)/(6)\text{ = -}((4)/(2))/((6)/(2))](https://img.qammunity.org/2023/formulas/mathematics/high-school/jfvkkauhc4nopc4l4d02uu5wvvd6hhdxug.png)
![m\text{ = -}(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ejea6dwu6vcb2co9jb3e0h0nee4mdrg34v.png)
Step 2: Let's determine the y-intercept (b). Substitute m = -2/3 and x,y = 0,6 in y = mx + b.
![\text{ y = mx + b}](https://img.qammunity.org/2023/formulas/mathematics/college/jktsxg4fkjzyla0fu188v2p7nlvte8hjri.png)
![\text{ 6 = (-}(2)/(3))(0)\text{ + b}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ljc9jaipm3hlxvkbgzd7q7l94731a46zdq.png)
![\text{ 6 = 0 + b}](https://img.qammunity.org/2023/formulas/mathematics/high-school/q7pgh53njza4ho6xy63g2e4ysoa03w6arj.png)
![\text{ b = 6}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3r5dtllc71jg8ynjlr4mqp0mhfamj4c6zh.png)
Step 3: Let's complete the equation. Substitute m = -2/3 and b = 6 in y = mx + b.
![\text{ y = mx + b}](https://img.qammunity.org/2023/formulas/mathematics/college/jktsxg4fkjzyla0fu188v2p7nlvte8hjri.png)
![\text{ y = (-}(2)/(3))x\text{ + (6)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wkjcivsydt110h7wnb7kzdsp55pgr3a76w.png)
![\text{ y = -}(2)/(3)x\text{ + 6}](https://img.qammunity.org/2023/formulas/mathematics/college/t20m12xgcp5v4wp3r36804ph2d4wnfpupy.png)
Therefore, the y-intercept of the line containing M is 6 and the equation of the line is y = -2x/3 + 6.