We are asked to simplify the following expression
![\sqrt[]{(405)/(324)}](https://img.qammunity.org/2023/formulas/mathematics/college/eljsu4iox661h4il82qm76h3qm26ptcft2.png)
Recall the quotient rule of radicands given by
![\sqrt[]{(a)/(b)}=\frac{\sqrt[]{a}}{\sqrt[]{b}}](https://img.qammunity.org/2023/formulas/mathematics/college/7lu236l0tnb5iwtf8scwxngrac8avbb384.png)
Applying the above rule to the given expression
![\sqrt[]{(405)/(324)}=\frac{\sqrt[]{405}}{\sqrt[]{324}}](https://img.qammunity.org/2023/formulas/mathematics/college/c8bmd3d7zaisbtsy631vk976d02kteknhu.png)
Notice that the square root of 324 is equal to 18
![\frac{\sqrt[]{405}}{\sqrt[]{324}}=\frac{\sqrt[]{405}}{18}](https://img.qammunity.org/2023/formulas/mathematics/college/i0jl6znyk313jas9qydbiys9uhnc81uc7g.png)
Also, notice that we can break 405 into factors as
![\sqrt[]{405}=\sqrt[]{81*5}=\sqrt[]{81}\cdot\sqrt[]{5}=9\cdot\sqrt[]{5}](https://img.qammunity.org/2023/formulas/mathematics/college/vo6l22jei9gto0hset1wval3fvypbstmpc.png)
So, the expression becomes
![\frac{\sqrt[]{405}}{18}=\frac{9\cdot\sqrt[]{5}}{18}=\frac{\sqrt[]{5}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/ngtcrf89mx24bl42hofvyjjw23zhkb8mey.png)
Therefore, the simplified expression is
![\frac{\sqrt[]{5}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/9frh1l1eczxrzc3wv0rsy1qv747bmohhjt.png)
a = √5
b = 2