Given a figure represents the distance between an airplane and a radar station on the ground.
We will find the following:
Step 1: we will find a relation between x and θ
As shown we may consider the triangle which a right-angle triangle
With the height = 3000 ft
And the side (x) is the adjacent side to the angle θ
the side (3000) is the opposite side to the angle θ
so, we can write the following equation:
![\begin{gathered} tan\text{ }θ=(opposite)/(adjacent) \\ \\ tan\text{ }θ=(3000)/(x)\rightarrow x=\frac{3000}{tan\text{ }θ} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bgw67mxede5jab2c53q2himvu4x6d8gwpu.png)
Step (2): at the instant x = 2000 ft, we will compute the following:
![\begin{gathered} x=2000 \\ θ=tan^(-1)((3000)/(x))\approx56.31\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e11xo4rgyhgijd85bou03627i8fqb1vjbz.png)
Also, we will find the first derivative of x and θ
![\begin{gathered} x=(3000)/(tanθ)=3000*cot\text{ }θ \\ \\ (dx)/(dt)=3000*(-csc^2θ)*(dθ)/(dt) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d3n1048jfztn5zguc2p3saou5yz9vgmg6v.png)
the value of (dx/dt) is given and equal to 200 ft/sec
Substitute dx/dt and θ to find dθ/dt
![\begin{gathered} 200=3000*(-csc^256.31)*(dθ)/(dt) \\ \\ (dθ)/(dt)=-(200)/(3000*csc^256.31)=-(3)/(65) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nf4z03xt9an40ry7ujshp23869s45ywk3i.png)
So, the answer to step (2) will be as follows:
![\begin{gathered} x=2000\text{ }ft \\ (dx)/(dt)=200\text{ ft/sec} \\ θ=56.31\degree \\ (dθ)/(dt)=-(3)/(65)\text{ deg/sec} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z4u3w58xlnstcgdha50c2vh2lvi7y2ra6o.png)
Step (3):
We will find how fast the radar is rotating
Which will be the angular velocity ω
![ω=(d\theta)/(dt)=-(3)/(65)\text{ deg/sec}](https://img.qammunity.org/2023/formulas/mathematics/college/19j1aioptgy8snxtcz3bu20w0yajbq608v.png)
convert from degree to radian
![ω=-(3)/(65)*(\pi)/(180)=0.001\text{ rad/sec}](https://img.qammunity.org/2023/formulas/mathematics/college/5n3ejy1dt96nrg7ubz52n3o9kzsp5k3vb8.png)