To find the volume of the sphere use the following formula:
![V=(4)/(3)\pi r^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/zraet4fw93vx9gjz3iextthjo546ibcpwc.png)
Where V is the volume and r is the radius. Use the given diameter to find the radius (radius is half the diameter):
![\begin{gathered} r=(D)/(2) \\ r=(12)/(2) \\ r=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4rioyfb2k3jxqc2ud2v4jdfy2jffpz75o0.png)
Now, use this value to find the volume of the sphere:
![\begin{gathered} V=(4)/(3)\pi(6^3) \\ V=(4)/(3)\cdot216\cdot\pi \\ V=288\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cmtspdyu6t8abj1ll8f9p6r74lyy0mq4rq.png)
The answer is 288pi in^3.
The approximate volume would be:
![\begin{gathered} V=288\pi \\ V=288(3.14) \\ V=904.32 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qioojtqj8jf0yyjtlzgje6idbquf6o7afr.png)
The approximate volume is 904.32, rounded to the nearest cubic inch it is 904.