209k views
1 vote
In the figure below, mZ1=(x+18)° and m2=5xºFind the angle measures.ХmZ1 =m_2 12Check

User Benjrb
by
5.6k points

1 Answer

4 votes

Step 1:Find the value of x from the diagram below

Step 2: Sum of angles on a straight line


\begin{gathered} m<1\text{ = x + 18} \\ m<2\text{ = 5x} \\ m<1+m<2=180^0 \\ x+18+5x=180^0 \\ \text{collect like term} \end{gathered}
\begin{gathered} x+5x\text{ = 180 - 18} \\ 6x\text{ = 162} \\ \text{divide both side by 6} \\ (6x)/(6)\text{ =}(162)/(6) \\ x=27^0 \end{gathered}
\begin{gathered} m<1\text{ =x+18} \\ m<1\text{ = 27 +18} \\ m<1=45^0 \\ m<2\text{ = 5x} \\ m<2\text{ = 5(27)} \\ m<2=135^0 \end{gathered}

Hence the value of x = 27° , m<1 = 45° and m<2 = 135°

In the figure below, mZ1=(x+18)° and m2=5xºFind the angle measures.ХmZ1 =m_2 12Check-example-1
User Ryan Stille
by
5.6k points