Given:
The altitude of a right circular cone = 15
The radius of the base = 8
A cylindrical hole of diameter 4 is drilled through the cone, with its axis along the axis of the cone.
So, the radius of the cylinder = 2
We will find the height of the cylinder using the ratio and proportional
Let the height of the cylinder = h
so,
![\begin{gathered} (h)/(15)=(6)/(8) \\ \\ h=(6\cdot15)/(8)=11.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/25qxudg01kohw2q094i4ybyb8sbqkafuw3.png)
So, the height of the cylinder = 11.25
The volume of the solid = the volume of the cone - the volume of the cylinder
The volume of the cone =
![(1)/(3)\pi\cdot r^2h=(1)/(3)\cdot3.14\cdot8^2\cdot15=1004.8](https://img.qammunity.org/2023/formulas/mathematics/college/ixrcmaq0arn161aenau32sv5gloscxzk3d.png)
The volume of the cylinder =
![\pi\cdot r^2\cdot h=3.14\cdot2^2\cdot11.25=141.3](https://img.qammunity.org/2023/formulas/mathematics/college/7x5wfa7765khccv2e5onya7wn95qeisdnn.png)
So, the volume of the solid =
![1004.8-141.3=863.5](https://img.qammunity.org/2023/formulas/mathematics/college/bgx05492ybc2tx94xlxvcac57xgs3ehrgj.png)
so, the answer will be: Volume of the solid = 863.5