![\begin{gathered} \text{range of f(x)= (-}\infty,0)\cup(0,\infty) \\ \text{range of f(x)=x}<0\text{ or x}>0 \\ \text{rangeof f}^(-1)(x)=(-\infty,1)\cup(1,\infty) \\ \text{rangeof f}^(-1)(x)=x<1\text{ or x}>1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bmwq8bmxqypmcwh3pg2pcy22k5iwr2bby5.png)
Step-by-step explanation
Step 1
find the inverse of the function
a) let
![y=(4)/(x^3-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/igsmqkgrnweltxn3cd3qwuye7awo25nqka.png)
now, swap the variables and isolate
![\begin{gathered} y=(4)/(x^3-1)\leftrightarrow x=(4)/(y^3-1) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/g5s9zpgi8e52dpy0b9jsej8q731gdz6cj0.png)
![\begin{gathered} x=(4)/(y^3-1) \\ x(y^3-1)=4 \\ y^3-1=(4)/(x) \\ y^3=(4)/(x)+1 \\ y=\sqrt[3]{(4)/(x)+1} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/87a8f9xanfm1f42es4fq0bacm254tf8xv3.png)
find the DOMAIN of the inverse, this would be the range for f(x)
so
![\begin{gathered} y=\sqrt[3]{(4)/(x)+1} \\ \text{the function is defined in all ream numbers, except when x= 0} \\ so \\ \text{domain of inverse: (-}\infty,0)\cup(0,\infty) \end{gathered}]()
therefore, the range of f(x)
![\begin{gathered} \text{range of f(x)= (-}\infty,0)\cup(0,\infty) \\ \text{range of f(x)=x}<0\text{ or x}>0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ke3y5kcqwdjh179f3hl926vhelljxw86lr.png)
Step 2
Now, as the range of a functino is the domain of its inverse,
the range of the inverse will be the domain of f(x), hence
a) find the domain of f(x)
![y=(4)/(x^3-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/igsmqkgrnweltxn3cd3qwuye7awo25nqka.png)
the domains is all real numbers except the number/s that make the denominator equals zero,s o
![\begin{gathered} x^3-1=0 \\ x^3=1 \\ x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ihoekje9thyjzuy2kxau8g1zcb9dpjrmjh.png)
therefore, the range of the inverse function is
![\begin{gathered} \text{domain f(x)=rangeof f}^(-1)(x) \\ \text{rangeof f}^(-1)(x)=(-\infty,1)\cup(1,\infty) \\ \text{rangeof f}^(-1)(x)=x<1\text{ or x}>1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/o018xxk9a39ptaoyel5cu7ext1pcnranof.png)
I hope this helps you