Solution:
Let the missing length (hypotenuse) be represented by x
To find the value of x, we will apply the Pythagorean theorem formula which is
![(Hypotenuse)^2=(Opposite)^2+(Adjacent)^2](https://img.qammunity.org/2023/formulas/mathematics/college/ycv6v9bb198f09kdgcyiyl8w0kduisvm0j.png)
Where the radius, r of the circle is
![\begin{gathered} r=6 \\ d=2r=2*6=12\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g9gmhayltyy994tvw9issujcsa6hpd2411.png)
Where
![\begin{gathered} Opposite=d=12\text{ units} \\ Adjacent=6.4\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sffxclr69o0p0vjzseybv1xw7zghqiwyt0.png)
Substitute the values of the opposite and adjacent into the Pythagorean theorem above
![\begin{gathered} (x)^2=(Oppos\imaginaryI te)^2+(Adjacent)^2 \\ (x)^2=12^2+6.4^2 \\ (x)^2=144+40.96 \\ (x)^2=184.96 \\ x=√(184.96) \\ x=13.6\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wn1v5l1q9qh2wia2kv550ax8ifq3cjy9ep.png)
Hence, the answer is 13.6 units