Given the points (-1,6) and (3,5).
The formula to find the slope is
![m=\frac{y_2-y_1_{}}{x_2-x_1}](https://img.qammunity.org/2023/formulas/mathematics/college/itow37fe9c3rw2hs8vaimoo8ia56kj3lm0.png)
Take
![x_1=-1,y_1=6,x_2=3,y_2=5](https://img.qammunity.org/2023/formulas/mathematics/college/2swf5se6f1wsgea8qe5k5aelcs9v47wcnv.png)
Plug the values into the formula and find the slope.
![\begin{gathered} m=(5-6)/(3-(-1)) \\ =(-1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m17c7b15f7kkenqbv4sbiwcxidoau7o8rp.png)
The slope-intercept form is y = mx+b.
Plug the value of m.
![y=-(1)/(4)x+b](https://img.qammunity.org/2023/formulas/mathematics/college/689w6b6thzuj3y4f69h1y88o7yc35p7t8n.png)
ThusConsider the point (-1,6). Substitute -1 for x and for y into the equation.
![\begin{gathered} 6=-(1)/(4)(-1)+b \\ =(1)/(4)+b \\ b=6-(1)/(4) \\ =(23)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fa1477xro2uxzhacf08ninz3evr5wevkl9.png)
Thus, the equation of the line in slope intercept form is
![y=-(1)/(4)x+(23)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/ze9vi5c0zlwxsl0ech09jnef5258afd2qd.png)