Solution:
The question is given below as
![-(x+6)>-2(1-x)](https://img.qammunity.org/2023/formulas/mathematics/college/2owrby4f0zf7uobyegve93rwv49nq9k7rz.png)
Step 1:
Expand the brackets
![\begin{gathered} -(x+6)>-2(1-x) \\ -x-6>-2+2x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/us49nu0mqpk4dysvp2dh1mix27w7nif1qm.png)
Step 2:
Collect similar terms
![\begin{gathered} -x-6>-2+2x \\ -x-2x>-2+6 \\ -3x>4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bkoj7s6ksntv9skzb5xfrhxs46vez0ceex.png)
Step 3:
Divide both sides by -3 (note: when divided by a negative coefficient, the inequality sign will be reversed)
![\begin{gathered} (-3x)/(-3)>(4)/(-3) \\ x<-(4)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kf553s455oybbio1snwp3btqazix4zou2t.png)
Hence,
The solution for the inequality is x < -4/3
The number line is given below as
While the graph is given below ( it will be graphed with a broken line)