The equation is given to be:
![P=3x+y](https://img.qammunity.org/2023/formulas/mathematics/college/q3jv2eynrsworr9s3fbymj4y8q1b8s3j29.png)
The inequalities used as a constraint for the equation are given to be:
![\begin{gathered} x\ge0 \\ x\le4 \\ y\ge-1 \\ y\le5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5lq1wla1olskwzifcbcd5065yq6jl2cv80.png)
To optimize the equation, we will plot the inequalities using a graphing tool. The graph is shown below:
The white region of the graph represents the solution space.
The vertices of the graph will be used to optimize the equation. These are:
![(x,y)=(0,5),(4,5),(0,-1),(4,-1)](https://img.qammunity.org/2023/formulas/mathematics/college/i3stgllp7knileoos8rkpttt0mthqrya5r.png)
At (4, 5):
![P=3(4)+5=12+5=17](https://img.qammunity.org/2023/formulas/mathematics/college/iyb2z4d1pppf9rb9upw9bqb2o40ld72thi.png)
At (0, 5):
![P=3(0)+5=5](https://img.qammunity.org/2023/formulas/mathematics/college/c4jiw7b738ne27ud6zka7t0ixrdlehpyht.png)
At (0, -1):
![P=-1](https://img.qammunity.org/2023/formulas/mathematics/college/8ckdu3xaiko0u7e1zx22prpdlb5grj3ggm.png)
At (4, -1):
![P=11](https://img.qammunity.org/2023/formulas/mathematics/college/cwnthz5dr9fmygas8r89hfjbq2ugzmszg4.png)
Therefore, the maximum value of P is 17.
The SECOND