154k views
3 votes
If a and b are two angles in standard position in Quadrant I, find cos(a+b) for the given function values. sin a=3/5and cos b=12/371) 153/1852) 57/1853) -57/1854) -153/185

User TienLuong
by
5.7k points

1 Answer

4 votes

The Solution:

Given that a and b are two standard angles in the first quadrant.

We are required to find cos(a+b) if


\begin{gathered} \sin a=(3)/(5),\cos b=(12)/(37) \\ \end{gathered}

By the formula of compound angles,


\cos (a+b)=\cos a\cos b-\sin a\sin b

Step 1:

We need to find the value of:


\cos a\text{ and }\sin b

Given that:


\begin{gathered} \sin a=(3)/(5)\text{ , and angle a is in the first quadrant, that is,} \\ 0^oBy Trigonometry we have:<p>By the Pythagorean Theorem, we can find x as below:</p>[tex]\begin{gathered} 5^2=3^2+x^2 \\ 25=9+x^2 \\ 25-9=x^2 \\ 16=x^2 \end{gathered}

Taking the square root of both sides, we get


\begin{gathered} \sqrt[]{16}=\sqrt[]{x^2} \\ \pm4=x \\ x=4 \end{gathered}

So, we can get the value of:


\begin{gathered} \cos a=(adj)/(hyp)=(4)/(5) \\ \\ \cos a=(4)/(5) \end{gathered}

Similarly, we shall find sinb :


\text{ If }\cos b=(12)/(37),0^o<p>By the Pythagorean Theorem, we can find y as below:</p>[tex]\begin{gathered} y^2+12^2=37^2 \\ y^2+144=1369 \\ y^2=1369-144 \\ y^2=1225 \end{gathered}

Taking the square root of both sides, we get


\begin{gathered} \sqrt[]{y^2}=\text{ }\sqrt[]{1225} \\ \\ y=35 \end{gathered}

So, we can get the value of:


\begin{gathered} \sin b=(opp)/(hyp)=(35)/(37) \\ \\ \sin b=(35)/(37) \end{gathered}

Substituting these values in the formula below:


\begin{gathered} \cos (a+b)=\cos a\cos b-\sin a\sin b \\ \\ \cos (a+b)=((4)/(5)*(12)/(37))-((3)/(5)*(35)/(37)) \end{gathered}
\begin{gathered} \cos (a+b)=(48)/(185)-(105)/(185)=(-57)/(185) \\ \\ \cos (a+b)=-(57)/(185) \end{gathered}

Therefore, the correct answer is [option 3]

If a and b are two angles in standard position in Quadrant I, find cos(a+b) for the-example-1
If a and b are two angles in standard position in Quadrant I, find cos(a+b) for the-example-2
User Amine Kerkeni
by
5.7k points