Step 1. Define the length
We will call the length of the rectangle x:
![\text{LENGTH}=x](https://img.qammunity.org/2023/formulas/mathematics/college/kwpmhgg9p6m13eh8sy3ie4lhts8vdkbyui.png)
Step 2. Define the width
Since the width is 11 less than twice the length:
![\text{WIDTH}=2x-11](https://img.qammunity.org/2023/formulas/mathematics/college/73z6sal3ponj0go2rio90rzht44dpccpe0.png)
Step 3. Use the formula for the perimeter of a rectangle:
![\text{PERIMETER}=2(WIDTH)+2(LENGTH)](https://img.qammunity.org/2023/formulas/mathematics/college/pjthk3pykss7qyzspa0jzsi46qnhbytkb2.png)
Substituting the value of the perimeter: 52.4, the width and length:
![52.4=2(2x-11)+2(x)](https://img.qammunity.org/2023/formulas/mathematics/college/dbw30ertmkqyr3100kf58l2pcjkrilpoga.png)
Using distributive property on the right side:
![52.4=4x-22+2x](https://img.qammunity.org/2023/formulas/mathematics/college/1fxdvk10z6obgr6m19o56hl9he1865bwev.png)
And combining like terms in the right:
![52.4=6x-22](https://img.qammunity.org/2023/formulas/mathematics/college/b2g1xjglou8zzhhbqyof1s25aj9ndpkjva.png)
Adding 22 to both sides:
![\begin{gathered} 52.4+22=6x-22+22 \\ 74.4=6x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tb34n675rv4xoy43nzuxs1o1vaa07x5r9t.png)
Dividing both sides by 6:
![\begin{gathered} (74.4)/(6)=(6x)/(6) \\ 12.4=x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r7mn4zywwri5faws4wt44aakv5wyewnw5i.png)
Thus, the width and length are:
![\begin{gathered} \text{LENGTH}=x=12.4ft \\ \text{WIDTH}=2x-11=2(12.4)-11=24.8-11=13.8ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3srgx06tz5e74lfhw8ub4q6vjx5wx7xf96.png)