SOLUTION.
The basketball court is rectangle. To solve this question, we need to know the formula for the perimeter of a rectangle
The perimeter of a rectangle is given by
![\begin{gathered} \text{Perimeter}=2(L+W) \\ \text{Where } \\ L=\text{length and W= Width} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8wuz6150sssyfe0fzxy9cybx1mk9dbndmp.png)
The expression giving from the question, we have
![\begin{gathered} \text{perimeter}=36m^2+2m-10 \\ \text{width}=m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fn2687ukvgl8ef11978f9ulyxdqp0get3l.png)
Substitute into the formula, we have
![\begin{gathered} 36m^2+2m-10=2(L+m^2) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zgy0kuoht0mcwbca8w18tapmokejzd5pmn.png)
factorize the common factor on the lefth-hand side, we have
![\begin{gathered} 2(18m^2+m-5)=2(L+m^2)_{} \\ \text{Divide both sides by 2, we have } \\ 18m^2+m-5=L+m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3bbdaohhyyti2biwr3kl791f2fq5054jh8.png)
Subtract m² from both sides of the equation, we obtain
![\begin{gathered} 18m^2-m^2+m-5=L+m^2-m^2 \\ \text{Then} \\ 17m^2+m-5=L \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uvnf7htlrpedv6imzuecjjogw4fc90wwdz.png)
Hence
The expression for the length is 17m²+ m - 5
Answer: L= 17m²+ m - 5