1.5k views
0 votes
Use the Law of Sines to solve the triangle. Round your answers to two decimal places.A = 8° 40', B = 13° 15', b = 4.8

Use the Law of Sines to solve the triangle. Round your answers to two decimal places-example-1

1 Answer

5 votes

Given


A=8°40^(\prime),B=13°15^(\prime),b=4.8

To find the value of a, c, C.

Step-by-step explanation:

It is given that,


A=8°40^(\prime),B=13°15^(\prime),b=4.8

Since,


A=8°40^(\prime),B=13°15^(\prime)

Then,


\begin{gathered} A+B+C=180 \\ 8\degree40^(\prime)+13\degree15^(\prime)+C=180\degree \\ C=180\degree-21\degree55^(\prime) \\ C=(179-21)\degree(60^-55^)^(\prime) \\ C=158\degree5^(\prime) \end{gathered}

Therefore, by using Sine law,


\begin{gathered} (\sin A)/(a)=(\sin B)/(b)=(\sin C)/(c) \\ (\sin8\degree40^(\prime))/(a)=(\sin13\degree15^(\prime))/(4.8)=(\sin158\degree5^(\prime))/(c) \\ \Rightarrow(\sin8\degree40^(\prime))/(a)=(\sin13\degree15^(\prime))/(4.8) \\ \Rightarrow(\sin13\degree15^(\prime))/(4.8)=(\sin158\degree5^(\prime))/(c) \end{gathered}

Therefore,


\begin{gathered} \begin{equation*} (\sin8\degree40^(\prime))/(a)=(\sin13\degree15^(\prime))/(4.8) \end{equation*} \\ (0.14608)/(a)=(0.227501)/(4.8) \\ a=(0.14608)/(0.047396) \\ a=3.08211 \\ a=3.1 \end{gathered}

Also,


\begin{gathered} \begin{equation*} (\sin13\degree15^(\prime))/(4.8)=(\sin158\degree5^(\prime))/(c) \end{equation*} \\ 0.047396=(0.366501)/(c) \\ c=(0.366501)/(0.047396) \\ c=7.73274 \\ c=7.7 \end{gathered}

Hence, the answer is


C=158\degree5^(\prime),a=3.1,c=7.7

User Jorfus
by
3.5k points