Solution:
The standard equation of a hyperbola is expressed as
![\begin{gathered} ((x-h)^2)/(a^2)-((y-k)^2)/(b^2)=1\text{ \lparen parallel to the x-axis\rparen} \\ ((y-k)^2)/(a^2)-((x-h)^2)/(b^2)=1\text{ \lparen parallel to the y-axis\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7162tad1bxch5kmmcnjj94h9ugvwhwo2wg.png)
Given that the hyperbola has its foci at (0,-15) and (0, 15), this implies that the hyperbola is parallel to the y-axis.
Thus, the equation will be expressed in the form:
![((y-k)^2)/(a^2)-((x-h)^2)/(b^2)=1\text{ ----equation 1}](https://img.qammunity.org/2023/formulas/mathematics/college/ins3dxrt8z50iipcacbxaiclub927z5rcr.png)
The asymptote of n hyperbola is expressed as
![y=\pm(a)/(b)(x-h)+k](https://img.qammunity.org/2023/formulas/mathematics/college/ad6p8yi15b3mo1k3reqcz6jtz8wqrqeiyv.png)
Given that the asymptotes are
![y=(3)/(4)x\text{ and y=-}(3)/(4)x](https://img.qammunity.org/2023/formulas/mathematics/college/tgz2wzec2rbb7btvg6xfg79do8ja6l15zi.png)
This implies that
![a=3,\text{ and b=4}](https://img.qammunity.org/2023/formulas/mathematics/college/nj6g802jixqb9khnqe96mxf6yhp80koh8f.png)
To evaluate the value of h and k,
![undefined]()