214k views
5 votes
F1=110 cos 50°i + 110 sin 50°j F2=60 cos 160°i + 60 sin 160°jPart A - Find their dot productPart B - Use the dot product to find the angle between them

1 Answer

4 votes

ANSWER :

Part A :

EXPLANATION :

Part A :

Note that the dot product of two vectors is given by :


\begin{gathered} A=ai+bj\quad and\quad B=ci+dj \\ A\cdot B=a(c)+b(d) \end{gathered}

From the problem, we have the vectors :


\begin{gathered} F_1=110\cos50i+110\sin50j \\ F_2=60\cos160i+60\sin160j \end{gathered}

The dot product will be :


\begin{gathered} F_1\cdot F_2=110\cos50(60\cos160)+110\sin50(60\sin160) \\ =-3986.55+1729.22 \\ =-2257.33 \end{gathered}

Part B :

The cosine of the angle between two vectors is given by :


\cos\theta=\frac{F_1\cdot F_2}{\lvert{F_1}\rvert\lvert{F_2}\rvert}

Solve for the |F1| and |F2|


\begin{gathered} \lvert{F_1}\rvert=√((110\cos50)^2+(110\sin50)^2)=110 \\ \lvert{F_2}\rvert=√((60\cos160)^2+(60\sin160)^2)=60 \end{gathered}

Now substitute the given values :


\begin{gathered} \cos\theta=(-2257.33)/(110(60)) \\ \text{ Using arccosine :} \\ \arccos(\cos\theta)=\arccos((-2257.33)/(110*60)) \\ \theta=110 \end{gathered}

The angle between two vectors is 110 degrees

User Stephanie Page
by
4.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.