220k views
5 votes
Can u alive this equation -15x^4x^3+10=8.245

User Geethanga
by
7.9k points

1 Answer

3 votes

1) Examining the following quartic equation:


-15x^4+4x^3+10=8.245

We can notice that this an incomplete equation. So let's proceed:


\begin{gathered} -15x^4+4x^3+10-8.245=0 \\ -15x^4+4x^3+1.755=0 \\ \end{gathered}

2) Let's use the Newton Method, or the Newton-Raphson method to find the derivative of that equation:

Notice that we need to find the derivative of that quartic function:

f'(x)= -60x³+12x² Applying the power rule

Let's take the first root to be 1, so x_0=1 Now we can plug into the formula


\begin{gathered} x_(n+1)=x_n-(f(x_n))/(f^(\prime)(x_n)) \\ f^(\prime)(x)=-60x^3+12x^2 \\ x_0=1 \\ x_1=1+(-15x^4+4x^3+1.755)/(-60x^3+12x^2) \\ x_1=1+(-15(1)+4(1)+1.755)/(-60(1)+12(1)) \\ x_1\approx0.8073 \\ x_2=0.8073+(-15(0.8073)^4+4(0.8073)^3+1.755)/(-60(0.8073)^3+12(0.8073)^2) \\ x_2\approx0.10582 \\ x_3=0.10582+(-15(0.10582)^4+4(0.10582)^3+1.755)/(-60(0.10582)^3+12(0.10582)^2) \\ x_3\approx0.66797 \\ x_4=0.66797+(-15(0.66797)^4+4(0.66797)^3+1.755)/(-60(0.66797)^3+12(0.66797)^2) \\ x\approx0.066485 \end{gathered}

3) Visualizing graphically

Hence, the answers are:


x_1=0.66482,x_2\approx-0.52803

Can u alive this equation -15x^4x^3+10=8.245-example-1
User Belzuk
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories