95.0k views
4 votes
Rewrite the equation in vertex form by completing the square: y=4x^2+24x-7

User Bron
by
3.2k points

1 Answer

1 vote

Given:


y=4x^2+24x-7

Required:

We need to rewrite the given equation in vertex form.

Step-by-step explanation:

Consider the equation.


y=4x^2+24x-7
y=2^2x^2+(2*6*2* x)-7
y=(2x)^2+(2*6*2x)-7

Add and subtract 36 on the left side of the equation.


y=(2x)^2+(2*12* x)-7+36-36
y=(2x)^2+(2*12* x)+36-36-7
y=(2x)^2+(2*12* x)+6^2-43
\text{ Use }a^2+2ab+b^2=(a+b)^2.\text{ Here a =2x and b=6.}
y=(2x+6)^2-43

Final answer:


y=(2x+6)^2-43

User Ara Yaghsizian
by
3.4k points