Answer:
Question:
If f and g are inverse functions, the domain of f is the same as the range of g.
Step-by-step explanation:
If f: A → B is a bijective function, then the inverse function of f, say g will be a function such that g: B → A whose domain is B (which is a range of A) and range is A (which is the domain of f).
For example The trigonometric sine function,
![\sin \colon\mleft[-\pi/2,\pi/2\mright]\to\mleft[-1,1\mright]](https://img.qammunity.org/2023/formulas/mathematics/college/2rtz1kfqak4xlx2vrac9p1hodoeeys83pn.png)
is a bijective function with a domain
![\mleft[-\pi/2,\pi/2\mright]](https://img.qammunity.org/2023/formulas/mathematics/college/dq631fizafjfa24p4glxapdyux38qbumfx.png)
and range
![\mleft[-1,1\mright].](https://img.qammunity.org/2023/formulas/mathematics/college/cawnc1061uyznvpr17f6s7g6oh05a6d2n1.png)
Now the inverse sine function i.e.,
![\sin ^(-1)\colon\mleft[-1,1\mright]\to\mleft[-\pi/2,\pi/2\mright]](https://img.qammunity.org/2023/formulas/mathematics/college/1b79r8gif0saos1f9ydmq7xkesk00dmblz.png)
has the domain
![\mleft[-1,1\mright]](https://img.qammunity.org/2023/formulas/mathematics/college/o0n37gzho1124ncs6nbeu6jtxim79j7too.png)
equal to the range of the sine function and the range of the function as
![\mleft[-\pi/2,\pi/2\mright]](https://img.qammunity.org/2023/formulas/mathematics/college/dq631fizafjfa24p4glxapdyux38qbumfx.png)
equal to the domain of the sine function.
Therefore,
Therefore, the statement if f and g are inverse functions, the domain of f is the same as the range of g isTRUE