First we need to find the line that passes through the points (-5, 1) and (1, -4).
To do so, we can use the linear equation below:
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
Where m is the slope and b is the y-intercept.
Using the points given, that is, applying the x and y values, we have that:
![\begin{gathered} (-5,1)\colon \\ 1=m\cdot(-5)+b \\ -5m+b=1 \\ \\ (1,-4) \\ -4=m\cdot1+b \\ m+b=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pe130dxrzu8m6wg62olsfow4olpcift8oh.png)
If we subtract the first equation by the second one, we have:
![\begin{gathered} -5m+b-(m+b)=1-(-4) \\ -5m+b-m-b=1+4 \\ -6m=5 \\ m=-(5)/(6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ucm23xor8ctrkinkz526yyxfomqhmc9um.png)
Parallel lines have the same slope, so the slope of the first line is also m = -5/6.
Now, using this slope and the point (8, 3), we can find the equation of the first line:
![\begin{gathered} (8,3)\colon \\ 3=m\cdot8+b \\ 3=-(5)/(6)\cdot8+b \\ 3=-(40)/(6)+b \\ 3=-(20)/(3)+b \\ 9=-20+3b \\ 3b=9+20 \\ 3b=29 \\ b=(29)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1suqs8nxw4jto4jyfbsz73rzeuc1qmq9sd.png)
So the equation of the line we want is:
![y=-(5)/(6)x+(29)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/bbkfy4tipkdekvkspez7moc14k4vmp8zq0.png)