Since they are similar triangles, then it is true that
![(a)/(p)=(b)/(q)=(c)/(r)](https://img.qammunity.org/2023/formulas/mathematics/college/5nkcrjke5ota2fzg04rzenup4ii3tcgxkq.png)
So, in this case, you have
![(b)/(q)=\frac{553\text{ m}}{395\text{ m}}=1.4](https://img.qammunity.org/2023/formulas/mathematics/college/nuewuxusquxkko4rewy45mhi4hg11ix8ha.png)
Then
![\begin{gathered} (c)/(r)=1.4=\frac{350\text{ m}}{r} \\ 1.4=\frac{350\text{ m}}{r} \\ r\cdot1.4=\frac{350\text{ m}}{r}\cdot r \\ r\cdot1.4=350\text{ m} \\ (r\cdot1.4)/(1.4)=\frac{350\text{ m}}{1.4} \\ r=250\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5u0fcm3b61j9i8u1hqv4d7yyuisj45nn0l.png)
On the other hand,
![\begin{gathered} (a)/(p)=1.4 \\ (280m)/(p)=1.4 \\ (280m)/(p)\cdot p=1.4\cdot p \\ 280m=1.4p \\ (280m)/(1.4)=(1.4p)/(1.4) \\ 200m=p \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/etknwvz8egcsf36ka8g3o8yqp0jot1fcnt.png)
Finally, finding the perimeter of the triangular track, that is, adding the sides
![200m+250+395m=845m](https://img.qammunity.org/2023/formulas/mathematics/college/j7tamzvy75lwlgevplcjo3t8demgoa4zk5.png)
Therefore, If Chang jogs one lap around the inside track, he runs 845 meters and the correct answer is B. 845 m.