Answer:
![NM=2√(3)\text{ }units](https://img.qammunity.org/2023/formulas/mathematics/college/c3rq1rztd45dzgr4l35czzcjxuid5obcoj.png)
Step-by-step explanation:
We are given that the 3 triangles are similar. This means that the corresponding angles of each triangle are equal.
We are given the measure of the angle NMK = 60º. Since the triangle NKM is similar to triangle MKL, the angle MLK = 60º = NMK
We have the triangle MKL:
Now, we can use the trigonometric ratio sine, to find the length of MK:
![\sin(60º)=(MK)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/etkmonn75lce2eh7ge82fte8apa3905wk7.png)
Thus:
![MK=8\sin(60º)=8\cdot(√(3))/(2)=4√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/ehktdraue1sa9ybi34gycfy64cnlzr9hoq.png)
And now, if we look at the triangle NKM:
And now, we can find the asked length, the length of side NM.
Using the trigonometric ratio cosine:
![\cos(60º)=(NM)/(4√(3))](https://img.qammunity.org/2023/formulas/mathematics/college/efsfe0zzncftjah3eu4lrmzl5fnrmqlgrn.png)
And solve:
![NM=4√(3)\cos(60º)=4√(3)\cdot(1)/(2)=2√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/s0szhempw72pbsxjpamwo0jktlxg9k1w4w.png)
Thus, the length of side NM is 4√3