72.9k views
3 votes
Find the exact length of the midsegment of trapezoid JKLM with verticesJ(6, 10), K(10, 6), L(8, 2), and M(2, 2).The length of the midsegment is

User Plyto
by
3.1k points

1 Answer

2 votes

The midsegment is equal to the average of the lengths of the bases, so:


M=(JM+KL)/(2)

Where:


\begin{gathered} JM=\sqrt[]{(6-2)^2+(10-2)^2} \\ JM=\sqrt[]{80}=4\sqrt[]{5}\approx8.9 \end{gathered}

and


\begin{gathered} KL=\sqrt[]{(10-8)^2+(6-2)^2} \\ KL=\sqrt[]{20}=2\sqrt[]{5}\approx4.47 \end{gathered}

Therefore:


M=\frac{4\sqrt[]{5}+2\sqrt[]{5}}{2}=3\sqrt[]{5}

Find the exact length of the midsegment of trapezoid JKLM with verticesJ(6, 10), K-example-1
User Darxsys
by
3.4k points