Step 1
Given; A triangle has vertices at (-3,-3) ,(-3,2) and 1,2.
Choose from the following all the possible ways to find the length of the hypotenuse of the triangle. Then calculate the actual length. Select all correct answers; more than one answer may be correct.
Step 2
The image of the triangle is seen below.
Thus, we can find the length of the hypotenuse by;
![\begin{gathered} 1)\text{ using the distance formula} \\ D=√((x_2-x_1)^2+(y_2-y_1)^2) \\ D=√((-3-1)^2+(-3-2)^2) \\ D=√((16+25)) \\ D=√(41) \\ Hypotenuse\text{ =}√(41) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/x0icg5s20t134wubrlh6q9ixd5uxs7r0n7.png)
![\begin{gathered} 2)\text{ Pythagorean theorem} \\ The\text{ length of the other legs are;} \\ 4\text{ and 5 using the distance formula} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mn8enzfst539vfelwo00rnxiwga3wfvpl2.png)
Thus;
![\begin{gathered} 4^2+5^2=hypotenuse^2 \\ hypotenuse=√(16+25) \\ hypotenuse=√(41) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2g839vifrqsydud7xo1vrg020gmg8x5uy3.png)
Answer;
![\begin{gathered} C)\text{ use the distance formula.} \\ E)\text{ The length of the hypotenuse is square root of 41.} \\ F)\text{ Use the Pythagorean theorem.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ttq73jhxlv1tyu05ugcazyefxb8c6oi8tv.png)