Ratio Test
The ratio test is a procedure that can help to determine if an infinite series converges or diverges.
The test comes in form of a limit:
![L=\lim _(n\to\infty)|(a_(n+1))/(a_n)|](https://img.qammunity.org/2023/formulas/mathematics/college/jbkj2tz0n9byk2tfokh02fuykuw9cpzpqf.png)
We are given the series:
![\sum ^(\infty)_(n\mathop=1)\mleft((2n!)/(2^(2n))\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/ctgx2xsqk4z7ycdyl5mbovkeg15t9t065t.png)
The term an is:
![a_n=(2n!)/(2^(2n))](https://img.qammunity.org/2023/formulas/mathematics/college/dkyu9rpv9xc97w5p3muud4zg6tdpaqp2va.png)
And the term an+1 is
![a_(n+1)=(2(n+1)!)/(2^(2n+2))](https://img.qammunity.org/2023/formulas/mathematics/college/p3zu7oxmpyb3h6xa7htq6c00qkovhrg2k0.png)
Substituting in the limit:
![L=\lim _(n\to\infty)((2(n+1)!)/(2^(2n+2)))/((2n!)/(2^(2n)))](https://img.qammunity.org/2023/formulas/mathematics/college/bif9kdkkrqlg5nu312ru8dkq1rf73w4pm9.png)
Operating:
![L=\lim _(n\to\infty)(2(n+1)!\cdot2^(2n))/(2n!\cdot2^(2n+2))](https://img.qammunity.org/2023/formulas/mathematics/college/yno6088jxk67be9vmlr8voj54g5b7djmih.png)
Simplifying:
![\begin{gathered} L=\lim _(n\to\infty)(2(n+1)\cdot n!\cdot2^(2n))/(2n!\cdot2^(2n)\cdot2^2) \\ L=\lim _(n\to\infty)((n+1))/(2^2) \\ L=\lim _(n\to\infty)((n+1))/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qj16ztmauoh3y1nhljg209lkgy4uw9pk6z.png)
This limit does not exist since it tends to infinity when n tends to infinity.
(a) The limit does not exist, thus the ratio cannot be evaluated
(b) The series is divergent