We are given the following equation:
![2^n+2^(98)=2^(99)](https://img.qammunity.org/2023/formulas/physics/college/h287pxytvroedzsjijt46pql97ejdeemrt.png)
We are asked to solve for "n". To do that we will first subtract 2 to the 98 from both sides:
![2^n=2^(99)-2^(98)](https://img.qammunity.org/2023/formulas/physics/college/6lkdc7matmj7r7usw6b6f2hngysq5c2xkr.png)
Solving the operations we get:
![2^n=3.2*10^(29)](https://img.qammunity.org/2023/formulas/physics/college/7704jdljjysfj7cbkij6y1xjv1qemzm3i1.png)
Now, we take natural logarithm to both sides:
![\ln 2^n=\ln 3.2*10^(29)](https://img.qammunity.org/2023/formulas/physics/college/ycnn9npee7t8r3505nem7m3u0b7ytjkkw8.png)
Now, we use the following property of logarithms:
![\ln x^y=y\ln x](https://img.qammunity.org/2023/formulas/mathematics/college/tp1ox5hmkfu8gw9a2ve5cs21v1oia0vvgf.png)
Applying the property we get:
![n\ln 2=\ln 3.2*10^(29)](https://img.qammunity.org/2023/formulas/physics/college/77hg83bpndyqi25is04b4idmgf3r6h725a.png)
Now, we divide both sides by ln 2:
![n=(\ln 3.2*10^(29))/(\ln 2)](https://img.qammunity.org/2023/formulas/physics/college/bvae0m13ofueq926ctddpjm4pumdt93yqn.png)
Solving the operations we get:
![n=98](https://img.qammunity.org/2023/formulas/physics/college/qm024mker9z2x9kkhafqdhcnjm0gffngx2.png)
Therefore, the value of "n" is 98.